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We determine a family of self-similar solutions of a two-dimensional problem 
involving the filtration of an incompressible liquid in regions with moving boun- 

daries. Our work is based on a method developed by Galin for solving the prob- 
lem of settling of water cones in a gravitational field [ 1 - 31. Following this 
method, we reduce the problem to one of finding an analytic function of a com- 

plex variable and the time, which effects a conformal mapping of the filtration 

region onto a strip and satisfies a special nonlinear condition on the boundary. 
For the solution of a problem of this kind Galin proposed the method of succes- 

sive approximations. 

Statement of the problem. We consider filtration of an incompressible 

in a region bounded by two infinite contours, I1 and 1‘s (see Fig. 1 a), one of 
which we assume to be fixed and the 

4y a 
other moving. We denote the moving 

contour by Iz (t). We assume the pres- 
sure constant on both contours, p = p. 
on I, and n = 0 on F,. This corre- 
sponds to the case when liquid is 

” ‘1 0 
pumped into the stratum along contour 
I’, which is the boundary between the 

Fig. 1 liquid and gas. The quantity p,, := 

PI?, - Pr, represents then the pressure 

drop with the pressure in the gas region being constant. The complex potential of such 

motion is of the form w (2, t) = -- A+$~~ (2, t) 

where k is the coefficient of filtration. Moreover, p (5, y, t) = Re W, (z, 1). Let the 
function z = .Z (t, 5) map the plane of the complex variable z = x + i?/ conformally 
onto the strip 0 e q <I in the plane 5 = E + ill in such a way that the contour I’, 
goes over into the line 9 = 9 and the contour Iz goes over into the line q = 1 (Fig. lb). 
In addition, we require that z (t, 0) = 0. The following conditions must then be satisfied 

on the boundary of this strip: 5 = E + i: Re Iw, (t, t)] -_ o 

5 = 5 + i0: Re [W, (6, t)] = po 

The solution of this problem in the 5: plane is obviously 

W1 (5, t) = iP05 + PO (1.1) 

It remains then to find the mapping function z = Z, (;, t). To obtain the conditions 

determining this function we use Galin’s method [l - 33. Let the contour Iz be displaced 

normally by an amount E (I’,, t) in the time interval At. Then 
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Here m is the porosity, Since it is clear that (see Es. (1. I) 1 

we obtain the following expression for the amount of the displacement: 

E == ii,:;;: 1 g- 

In using the mapping z (8, 5) corresponding to time t, we note that the new positionof 

the contour I’$ in the 5 plane at the infant (t + At) will differ from the line r~ = ; 

by the amount of the normal displacement e,. It is obvior~ that 

Ex= ,&</ = /&ZC,Z -$ (1.2) 

Let the function & (5) map the filtration region bounded by the contours l”r and FL’ 
onto the strip o < q < 1. Then the magnitude of the difference appearing within the 
brackets in the expression 

t;l (5) = 5 + P& (5) - 51 

will be small, and it is obvious that 

ImL (5) - Slnsl = 81, Xm fL 63 - Cl,,, = 0 CL 3) 

In addition z (t + At, 5) = z (t, & (5)). Using the last eq~tions, we can write 

x (f + At, 5, -z (r, i) = -$- At _t... 

t(t 4-L% Q-z (4 5) = z(t, Cr)-s(t, Q= &-.-6] + ..l 

where the dots denote infinitesimals of higher order. Then 

a2 / at 51-5 
-----z- =---j-y-y-... 
#al& 

Using Eqs. (2,2) and (4.3), we obtain 

These expressions ~~ti~~ the nonlinear bo~da~ ~nditions for determiniflg the map- 
ping function z (8, 5). After nansforming these conditions, we can rewrite them in the 

following equivalent form : 
az dl 

Iin~~=--1 for 5 = E + i 651 

&!2_& ag az =O for 5 = F + i0 

(z = p&t / m, 2 = z _- iy) 

2, Ssrf=rimilat wlU;tfC)ri, We seek the mapping function z (tl 5) for our prob- 
lem in the form 

2 fz, 5) = v”zz* (5, 
Here z* (j) is an analytic f~c~on of the complex variable 5 = F; + iq, de~ned in the 
strip 0 \( TJ f 1. On the boundaries of the strip, as a consequence of the relations (1.5), 
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the following conditions must be satisfied : 
dP - 

Imzz* --_2 
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for 5 = E + i (2.I) 
dz* - 

Imdgz* := 0 for 5 = 6 + iO 

In addition, we require that Z* (0) = 0. 

The question of finding a complete solution of this problem remains open, however, 

we can point out a certain class of its solutions, Let us seek those solutions for which 
the quantity dz*_ 

Im $5z* 
( 1 

is a function of the single variable 9. This condition leads to the conclusion that the 

quantity 1 z* Ia must be representable in the form 

I z* I 2 = a (El + B (11) 

Since Z* (5) is an analytic function of ;, it follows that a (E) and p (q) must be 
connected by the differential equation 

,, I, 
“4F + L = 

u;’ + PP 
a + p 

Without giving the details of the transformations of this equation, we merely remark that 
all of its solutions can be obtained from the system of equations 

where cl, c2 and cQ are arbitrary constants. From this system we determine the following 

essentially distinct types of solutions satisfying the boundary conditions (2.1) : 

The first of these solutions corresponds to a one-dimensional motion of the liquid with 

streamlines parallel to the OY -axis; the second of 
these is essentially multi-dimensional in nature. 
The flow picture in the 5, y plane is depicted in 
Fig. 2. The equipotential curves of the resulting 

self-similar solution are given by the moving hyper- 

bolas (9 = const, 0 < q < 1) 

Fig. 2 (-&)” - (*n)’ :.-. ,;L”‘;$& 

while the streamlines are the ellipses (E = const, 0 < E < m) 

Initially, the liquid occupies the two sectors adjacent to the OX-axis, the sector angle 
beinggivenby a==arctgA,O<1\<oo. 

In conclusion, we note that, in spite of its artificial nature, the solution we have found 
may prove to be useful for the solution of certain special filtration problems; it may also 



be used for determining the accuracy of approximate solutions and computational algo- 
rithms. 
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The separation of a system of three elasticity theory equations in the static case 

to a system of two equations and one independent equation for a space with a 
radial inhomogeneity is presented in a spherical coordinate system. These equa- 

tions are solved by separation of variables for specific kinds of radial inhomoge- 

neity. In particular, solutions are found for the Lamd coefficients p = con& h (r) 

is an arbitrary function, p = pLo?, h = $,rP. 
While methods of solving problems associated with the equilibrium of an elas- 

tic homogeneous sphere have been studied sufficiently [l]. problems with spheri- 

cal symmetry of the boundary conditions have mainly been solved for an inho- 
mogeneous sphere 12. 3 J. 

For a particular kind of inhomogenei~ dependent on one Cartesian coordinate, 

the equations have been separated completely in [4]. A system of three equations 
with a radial inhomogeneity in a spherical coordinate system is separated below 
by a method analogous to [4] . 

1, The equilibrium equations in displacements with a radial inhomogeneity and no 
mass forces are 

(hf21~)~raddivu--rotr.ot.u$i,)i’divu_t~~ i,xrotu+2$-) =O (1.1) 
( 

Here 1, (r) and P (7) are the Lame’ coefficients dependent on the radius, ci, is the unit 
vector in the radial direction, and u is the displacement vector. Let us write (1.1) in 
matrix form in spherical coordinates 

j/ aiii i/cd (u,, UO’ XJ = 0 0.2) 


